vimp.rfsrc.RdCalculate variable importance (VIMP) for a single variable or group of variables for training or test data.
vimp(object, xvar.names, m.target = NULL, 
  importance = c("anti", "permute", "random"), block.size = 10,
  joint = FALSE, seed = NULL, do.trace = FALSE, ...)An object of class (rfsrc, grow) or
    (rfsrc, forest). Requires forest=TRUE in the
    original rfsrc call.
Names of the x-variables to be used. If not specified all variables are used.
Character value for multivariate families specifying the target outcome to be used. If left unspecified, the algorithm will choose a default target.
Type of VIMP.
Specifies number of trees in a block when calculating VIMP.
Individual or joint VIMP?
Negative integer specifying seed for the random number generator.
Number of seconds between updates to the user on approximate time to completion.
Further arguments passed to or from other methods.
Using a previously trained forest, calculate the VIMP for variables
  xvar.names.  By default, VIMP is calculated for the original
  data, but the user can specify a new test data for the VIMP
  calculation using newdata.  See rfsrc for more
  details about how VIMP is calculated.
joint=TRUE returns joint VIMP, defined as importance for a group of variables when the group is perturbed simultaneously.
csv=TRUE return case specific VIMP.  Applies to
  all families except survival families.  See example below.
An object of class (rfsrc, predict) containing importance
  values.
Ishwaran H. (2007). Variable importance in binary regression trees and forests, Electronic J. Statist., 1:519-537.
# \donttest{
## ------------------------------------------------------------
## classification example
## showcase different vimp
## ------------------------------------------------------------
iris.obj <- rfsrc(Species ~ ., data = iris)
## anti vimp (default)
print(vimp(iris.obj)$importance)
## anti vimp using brier prediction error
print(vimp(iris.obj, perf.type = "brier")$importance)
## permutation vimp
print(vimp(iris.obj, importance = "permute")$importance)
## random daughter vimp
print(vimp(iris.obj, importance = "random")$importance)
## joint anti vimp 
print(vimp(iris.obj, joint = TRUE)$importance)
## paired anti vimp
print(vimp(iris.obj, c("Petal.Length", "Petal.Width"), joint = TRUE)$importance)
print(vimp(iris.obj, c("Sepal.Length", "Petal.Width"), joint = TRUE)$importance)
## ------------------------------------------------------------
## survival example
## anti versus permute VIMP with different block sizes
## ------------------------------------------------------------
data(pbc, package = "randomForestSRC")
pbc.obj <- rfsrc(Surv(days, status) ~ ., pbc)
print(vimp(pbc.obj)$importance)
print(vimp(pbc.obj, block.size=1)$importance)
print(vimp(pbc.obj, importance="permute")$importance)
print(vimp(pbc.obj, importance="permute", block.size=1)$importance)
## ------------------------------------------------------------
## imbalanced classification example
## see the imbalanced function for more details
## ------------------------------------------------------------
data(breast, package = "randomForestSRC")
breast <- na.omit(breast)
f <- as.formula(status ~ .)
o <- rfsrc(f, breast, ntree = 2000)
## permutation vimp
print(100 * vimp(o, importance = "permute")$importance)
## anti vimp using gmean performance
print(100 * vimp(o, perf.type = "gmean")$importance[, 1])
## ------------------------------------------------------------
## regression example
## ------------------------------------------------------------
airq.obj <- rfsrc(Ozone ~ ., airquality)
print(vimp(airq.obj))
## ------------------------------------------------------------
## regression example where vimp is calculated on test data
## ------------------------------------------------------------
set.seed(100080)
train <- sample(1:nrow(airquality), size = 80)
airq.obj <- rfsrc(Ozone~., airquality[train, ])
## training data vimp
print(airq.obj$importance)
print(vimp(airq.obj)$importance)
## test data vimp
print(vimp(airq.obj, newdata = airquality[-train, ])$importance)
## ------------------------------------------------------------
## case-specific vimp
## returns VIMP for each case
## ------------------------------------------------------------
o <- rfsrc(mpg~., mtcars)
v <- vimp(o, csv = TRUE)
csvimp <- get.mv.csvimp(v, standardize=TRUE)
print(csvimp)
## ------------------------------------------------------------
## case-specific joint vimp
## returns joint VIMP for each case
## ------------------------------------------------------------
o <- rfsrc(mpg~., mtcars)
v <- vimp(o, joint = TRUE, csv = TRUE)
csvimp <- get.mv.csvimp(v, standardize=TRUE)
print(csvimp)
## ------------------------------------------------------------
## case-specific joint vimp for multivariate regression
## returns joint VIMP for each case, for each outcome
## ------------------------------------------------------------
o <- rfsrc(Multivar(mpg, cyl) ~., data = mtcars)
v <- vimp(o, joint = TRUE, csv = TRUE)
csvimp <- get.mv.csvimp(v, standardize=TRUE)
print(csvimp)
# }