
Basics

CC by Min Lu• Learn more with the randomForestSRC homepage • randomForestSRC version 2.12.0 • Updated: 2021-08

randomForestSRC CHEAT SHEET

Tune mtry and nodesize
randomForestSRC is a fast OpenMP and memory efficient
package for fitting random forests (RF) for univariate,
multivariate, unsupervised, survival, competing risks, class
imbalanced classification and quantile regression.
A basic grow call is of the form:

rfsrc(formula, data, ntree, mtry, nodesize)

Grow your RF through rfsrc,
specify your model in formula,
provide your data frame in data

and tune your model via ntree, mtry, nodesize.

Specify a formula

choose your variables in formula and grow a tree.

o <- rfsrc(y ~ a + z, data= dta, ntree = 1)

your outcome(s) will be saved in o$y and your
predictors are in o$x from dta without missing values.
To impute your data, use

Clean up and impute data

o <- impute(y ~ a + z, data = dta)

o <- rfsrc(y ~ a + z, data = dta, na.action = "na.impute")

a zy a b z

NA

tune Find the optimal mtry and nodesize tuning parameter for a
random forest using out-of-bag (OOB) error

o <- tune(quality ~ ., wine)

> o$optimal

nodesize mtry

1 5

tune.nodesize Find the optimal nodesize

Convenient interface for growing a CART tree

rfsrc.cart(formula, data, ntree = 1, mtry = ncol(data),

bootstrap = "none")

Other Ensemble Values for Training Data

Inference from the Forest
Survival rfsrc(Surv(time, status) ~ ., data = veteran)

Competing Risk rfsrc(Surv(time, status) ~ ., data = wihs)

Regression
Quantile Regression

rfsrc(Ozone ~., data = airquality)
quantreg(mpg ~ ., data = mtcars)

Classification
Imbalanced Two-Class

rfsrc(Surv(time, status) ~ ., data=veteran)
imbalanced(status ~ ., data = breast)

Multivariate Regression
Mixed Regression
Quantile Regression
MV Mixed Quantile

rfsrc(Multivar(mpg, cyl) ~., data = mtcars)
rfsrc(cbind(Species,Sepal.Length)~.,data=iris)
quantreg(cbind(mpg, cyl) ~ ., data = mtcars)
quantreg(cbind(Species,Sepal.Length)~.,data=iris)

Unsupervised
sidClustering
Breiman (Shi-Horvath)

rfsrc(data = mtcars)
sidClustering(data = mtcars)
sidClustering(data = mtcars, method = "sh")

y

Grow

Fast OpenMP parallel computing of random forests

rfsrc(formula, data, ntree = 500,

mtry = NULL, ytry = NULL,

nodesize = NULL, nodedepth = NULL,

splitrule = NULL, nsplit = 10,

importance = c(FALSE, TRUE, "none", "permute",

"random", "anti"),

ensemble = c("all", "oob", "inbag"),

bootstrap = c("by.root", "none", "by.user"),

samptype = c("swor", "swr"),

samp = NULL, membership = FALSE,

na.action = c("na.omit", "na.impute"),

nimpute = 1,

ntime = 250, cause,

proximity = FALSE, distance = FALSE,

forest.wt = FALSE, xvar.wt = NULL,

yvar.wt = NULL, split.wt = NULL,

case.wt = NULL,

forest = TRUE,

var.used = c(FALSE, "all.trees", "by.tree"),

split.depth = c(FALSE, "all.trees", "by.tree"),

seed = NULL, do.trace = FALSE,

statistics = FALSE, ...)

rfsrc.fast Fast approximate random forests using subsampling
with forest options set to encourage computational speed

rfsrc.anonymous Random forests carefully modified so as not to
save the original training data when sharing

synthetic Synthetic random forest using synthetic features

imbalanced Solutions to the two-class imbalanced problem

quantreg Univariate or multivariate quantile regression forest and
returns its conditional quantile and density values

sidClustering Clustering of unsupervised data

Ensemble Predicted Value for Training Data

o <- rfsrc(Ozone ~ ., data = airquality)

Inbag and out-of-bag (OOB) predicted values for the training dataset
are in o$predicted and o$predicted.oob

Prediction Error for Assessing Model Performance

• For classification problem, we also have $class and
$class.oob for class labels

• For survival problem, we have
$survival and $survival.oob for survival function
$chf and $chf.oob for cumulative hazard function
$cif and $cif.oob for cumulative incidence function

o$err.rate returns tree cumulative OOB
error rate; print(o) lists OOB error rate in
the bottom; plot(o) plots OOB error rate
along with number of trees; get.auc(y,
prob)obtains the value of AUC (area under
the ROC curve)

get.mv.error obtains error rate from a multivariate random forest

o <- rfsrc(Species ~ ., data=iris, block.size=1)

https://www.randomforestsrc.org/

CC by Min Lu• Learn more with the randomForestSRC homepage • randomForestSRC version 2.12.0 • Updated: 2021-08

Variable Selection

o <- rfsrc(Species ~ ., iris, importance = TRUE)

Or
obj <- rfsrc(Species ~ ., data = iris)

o <- vimp(obj)

Variable Importance (VIMP)

holdout.vimp calculates hold out VIMP from the error rate of
blocks of trees grown with and without a variable

get.mv.vimp returns VIMP from a multivariate random forest

Partial Plot

Marginal Effect Plot

Partial Dependence Plot

plot.variable(o, xvar.names)

Tree Visualization

Set surv.type for survival analysis:

plot.survival plots various survival estimates

Visualization

plot.competing.risk plots summary
curves from a competing risk analysis

plot.quantreg plots quantiles
obtained from a quantile regression
forest

subsample subsample forests for VIMP
confidence intervals

plot.sample plots Subsampled VIMP
confidence intervals

o <- rfsrc(mpg ~ ., mtcars)

smp.o <- subsample(reg.o, B=25,

subratio=.5)

plot.subsample(smp.o)

Minimal Depth

Variable Selection and Hunting

max.subtree extracts minimal depth and maximal subtree
information used for variable selection and identifying interactions
between variables

var.select(formula, data, method) Variable selection or
hunting by setting method

md Minimal depth (default)
vh Variable hunting
vh.vimp Variable hunting with VIMP

plot.variable(o, xvar.names, partial = TRUE) and partial

mort Mortality
rel.freq Relative frequency of mortality
surv Predicted survival, where the predicted survival is

for the time point specified using time
years.lost The expected number of life years lost
cif The cumulative incidence function
chf The cumulative hazard function

Continuous predictor:Categorical predictor:

get.partial.plot.data is a handy function that parses the
output from "partial.rfsrc" in format suitable for plots

o$importance returns permutation VIMP
and plot(o) plots VIMP when setting
importance to "permute" or "TRUE” in
rfsrc or using vimp

get.tree extract a single tree from a forest
and plot it on your browser

mtcars.unspv <- rfsrc(data = mtcars)

plot(get.tree(mtcars.unspv, 5))

Predict on New Data
o.pred <- predict(object = o, newdata)

Predicted values for the new dataset are in o.pred$predicted

get.mv.predicted returns predicted value for multivariate
regression analysis

Restore

o <- rfsrc(Ozone ~ ., data = airquality)

predict(o, proximity = TRUE)$proximity

predict(o.obj, var.used = "by.tree")$var.used

predict(o, get.tree=10:15)$err.rate

Restoration using the predict function makes it possible for users
to acquire information from the grow forest without the
computational expense of having to regrow a new forest

Examples of restore are as follows (extract: proximity, variable
splitting behavior, performance over specific trees)

Split Statistics

stat.split acquires split statistic
information. The end-cut
preference (ECP) splitting property
can be plotted

https://www.randomforestsrc.org/

